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The perturbed motion of a gyrostat, which is very similar to regular Euler precession, is analysed. The perturbations considered
include small displacements of the centre of gravity, the inclusion of rotors, and the loss of dynamic symmetry. Using the
Kolmogorov—-Amol'd theory, the stability of conditionally periodic motion close to regular precession is established. © 1997 Elsevier
Science Ltd. All rights reserved.

Consider the perturbed motion of a gyrostat in a uniform gravitational field. The unperturbed motion is taken as
Euler inertial rotation about a fixed point of a solid with dynamic axial symmetry (4 = B). The perturbations are
caused by symmetric rotors, displacements of the centre of gravity of the body about a fixed point, and the loss of
dynamic axial symmetry.

The analysis was carried out in canonical Poincaré variables L, p;, p2, A, @1, @, which are associated with the
canonical Andoyer-Deprit variables L, G, %, [, g, h by the relations [1]

L=L, pj=L-G, p;=G-%, A=Il+g+h, oy=—@g+h), o,=-h
Then the Hamiltonian which describes the perturbed motion of the gyrostat will have the form

_ae-2n L A-B

H=Ho+€(H1+H2+H3), HO A 2C, A

Here & is a small parameter (4 and B are the moments of inertia of the gyrostat), H is the unperturbed Hamiltonian
(C is the axial moment of inertia), and the components of the perturbation function Hy, H,, H; can be represented as

H, =gl—%)-cos2(l+m,)

Hy= D[i‘;—' Py (p; - 2L sin(A + @, )+-°;?2 Py (P - 2L cos(A +©, )+°‘—C3 L]Q. )

Hy= —mg{Bl[bsin(k+m1 )+5"2- ((bg +1)sin(A+@3)+(by — Dsin(r+2a, —mz)):|+

+ Bz[bcos(hﬂnl )+%((b4 +1)cos(A + @y ) +(by —Dcos(A +20; — 0, ))]+

+ PB3(by +b3cos(®y — ))}
where a,, 0, 03, are the direction cosines of the axis of dynamic symmetry of the rotor about the associated axes,

Q is the relative angular velocity of the rotor (Q = const) and J is its moment of inertia. We have also used the
notation

po Lm0 =001 =20 | (02QL-2py—pp , _(Lopi-pplL
(L-p? ’ L-p, (L-p1)*

b, - (1P2() ~2LX2L-2p, —pp% L
- (L-py)? L-p,

eD=J, Bl£=xC' Blzﬁ=)‘c, ﬂ3€=ZC
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(¢, Yo, zc are the coordinates of the centre of masses of the gyrostat).

It is clear from (1) that the component eH of the perturbation function describes perturbations caused by the
loss of dynamic axial symmetry of the gyrostat, eH, the perturbations due to the presence of rotors, and eH; the
perturbations due to displacement of the centre of masses of the gyrostat relative to the fixed point.

When € = 0 the general solution of the system of canonical equations has the form

L=Ly=const, p;=p;g=const, Py =pyy=const

A=nt+v,, @ =nt+v,, ©,=®, =const

where ny = —p,/4 + L/C, n, = (p; - L)/A are the frequencies of unperturbed motion, and v, and v, are constants
of integration.

To the perturbation function R = ¢(H; + H, + Hs) we now apply the averaging operator M, ,,[R] [2] with respect
to the fast angular variables A and «,, after which the averaged Hamiltonian can be written in the form

= _pip-2L) [pl(p‘—ZL)+a3DLQ_ mb]
H="8 "2c*” 4B c Pumeb:

The corresponding canonical averaged equations have the form

d_L—Q' m_-_o dﬁ.=o

dt dt ' odr
di_ p L_ (¢ 030
& A C e(219 c tPameby. &)

do ~L L- d®
LBl +€( 5 : L+Bymeb, o, ); 7‘2'=-833m852.p,

where

2L-p, -p, 2 2L 1 L
b2, =b[ - > b = - b B e c———
L= Wmpiopp) I-p ] 2=\ T5 T ) BT I,

Integrating system (2), we obtain
L = Ly = const, X=(n,+N,)t+vi; P =Pip =const, @, =(ny +Ny)t+Vj 3)
ﬁz = -620 = const, -(52 = N3I+ Vi3

where

DQ -L
M= -5(%- 23C—+B3mgbz,,‘), N, = e(pIZB ~Bamgb, o, )- N3 =—eBymgh, 5,

(Vi, V3, v3 are the constants of integration).

It is clear from (3) that the averaged system (2) describes pseudo-regular precession.

We can determine the type of motion of the gyrostat described by the complete system, rather than the averaged
system of equations, by using Kolmogorov-Arnol’d theorem [3]. According to this theorem, perturbed motion (that
is, motion described by a system of which some terms can be omitted during averaging) is conditionally periodic
if the unperturbed motion is not intrinsically degenerate, that is

= O(3H /9L, dH /3p,, oH / dp,)
HessH = #0 4
ALp1.p2) @)

Computing the partial derivatives that appear in the Hessian, we obtain

2.2 2 2
7 Pim g [C(L+p )3L-p))-4L°A] »
Hess H = AC(L—p)) €

+0(e%)

Thus if C(L + py) (3L - p;) # 4L4, inequality (4) holds, that is, the motion of the gyrostat described by the
averaged system of equations cannot degenerate and thus, by the Kolmogorov--Arnol’d theorem [3], it will be stabie
with respect to the quantities L, p, and p,. This in turn implies that the perturbed motion described by the complete
system of equations will be conditionally periodic for all ¢ = ¢,
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